
Ubuntu-MD Nov 17, 2018 Presentation
Pi3 as a Wireless Access Point, USB Network Print, Proxy (squid), OpenVPN (PiVPN), Media (Kodi),

Security motion detection or Webserver.

We will cover in detail the wireless access point and network print server (image of this server setup

with Raspian is available).

Documentation for Proxy, OpenVPN, Media, Security motion detection (motioneye on dedicated Pi3),

media or Webserver will be provided. I am currently using some of them and will provide examples of

my setups.

Using Raspberry Pi 3 running Stretch for a
WiFi router

There are several tutorials out there about turning your Rapberry Pi into a WiFi access point, but they

all seem to written for Raspbian Jessie or earlier. There are a few changes in Stretch, the most recent

version of the Pi’s operating system, that seem to break these tutorials.

Here I will describe what I did to turn my Raspberry Pi 3 into a WiFi router. This should all work for

any Pi running Stretch, though I have only tested it on the 3. My desired routing setup is to plug an

Ethernet cable from the Pi into a modem, so that the Internet connection through that modem can be

shared by several wireless devices.

Differences between what I found in previous tutorials and what I needed to do related mainly to the

switch from configuring the WiFi interface device via the /etc/network/interfaces file (used

under Jessie and prior versions of Raspbian) to using the /etc/dhcpcd.conf file (as used by

Stretch). Here’s how I set up my router:

Software

Over the course of this tutorial, you’ll need to sudo apt-get install three packages. But don’t

install them just yet! Installing iptables-persistent as the final step causes it to notice you’ve

changed the defaults already, and prompts you to save your work. It’s very convenient! The three

packages are:

• hostapd

• dnsmasq

• iptables-persistent

The first is the access point software, which creates and broadcasts a wireless network to which other

computers can connect. The second manages the addresses that will be handed out to computers

connecting on the new network. And the third makes sure that settings about how to route packets

between the wired Ethernet device and the WiFi device are saved, so that the connection will be

restored when the Pi is restarted.

Configure hostapd

First, install hostapd via

sudo apt-get install hostapd

You’ll configure two files to make your Pi into an access point. First, create the file /etc/hostapd/

hostapd.conf for editing via nano:

sudo nano /etc/hostapd/hostapd.conf

This file will hold the settings for your access point. Just copy paste this code, but put your own

choices in for ssid (this will be the name of the network you’re creating) and wpa_passphrase

(this is the password for connecting to your new network):

interface=wlan0
ssid=network_name_here
hw_mode=g
channel=7
ht_capab=[HT40][SHORT-GI-20][DSSS_CCK-40]
wmm_enabled=0
macaddr_acl=0
auth_algs=1
wpa=2
ignore_broadcast_ssid=0
wpa_passphrase=network_password_here
wpa_key_mgmt=WPA-PSK
wpa_pairwise=TKIP
rsn_pairwise=CCMP

If you’d like to learn more about these configuration options, check the documentation.

Now you need to tell hostapd to read this configuration file when it starts. To do so, edit the /etc/

default/hostapd file:

sudo nano /etc/default/hostapd

and change the line that reads

DAEMON_CONF=""

to

DAEMON_CONF="/etc/hostapd/hostapd.conf"

Configure dnsmasq

Install dnsmasq via

sudo apt-get install dnsmasq

You have to configure two files in order for dnsmasq to start assigning IP adresses to devices that

connect to your newly configured access point. First, open the dhcpcd configuration file in order to

assign your Pi a static IP address on the WiFi device. This might not be necessary, but it does give you

an address where you can wirelessly SSH into the Pi, so you’ll no longer need it to be connected to a

monitor and keyboard.

Note that before you can SSH into your Pi, you must enable it for SSH, either by creating an empty file

called ssh at the top level of the boot partition, or by connecting the Pi to a keyboard and monitor,

opening a terminal, and using the menu under the sudo raspi-config command. Googling

“headless Raspberry Pi ssh” will get you answers here.

Back to the main story. At the terminal, enter sudo nano /etc/dhcpcd.conf. At the bottom of

the file, enter the following lines, but change the ip_address and routers to whatever address

you want to assign to your Pi. (works on 192.168.0.0 network)

interface wlan0
static ip_address=10.0.0.1
static routers=10.0.0.1,192.168.0.1
static domain_name_servers=8.8.8.8,8.8.4.4

Now, edit the dnsmasq config file so it knows which addresses to assign to devices that connect on

WiFi. Open the file with the command sudo nano /etc/dnsmasq.conf, and add the following

lines at the end, except that dhcp-range should indicate whatever addresses you want to be

assignable on your network:

interface=wlan0
domain-needed
bogus-priv
dhcp-range=10.0.1.20,10.0.1.20,12h

Configure IP routing

At this point you have a wireless access point, but it doesn’t connect to your Pi’s wired Ethernet port,

which is its connection to the Internet. Making this final link is pretty easy. First, enable routing by

opening the config file with sudo nano /etc/sysctl.conf, and add the following line:

net.ipv4.ip_forward=1

Then, at the command line, tell the Pi how to decide which packets get routed. That’s done by

executing these three commands:

sudo iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE
sudo iptables -A FORWARD -i eth0 -o wlan0 -m state --state RELATED,ESTABLISHED -j
ACCEPT
sudo iptables -A FORWARD -i wlan0 -o eth0 -j ACCEPT

Finally, make these routing settings permanent by installing the iptables-persistent package,

and saying yes when prompted to save the current settings:

sudo apt-get install iptables-persistent

(incorrect should be 10.0.0.20,10.0.0.25,12h)

Setting up Network Printer on Raspberry Pi:

This section will carry us through a series of steps that will culminate in the installation of CUPS on

your Raspberry Pi.

Step 1: Upgrade the Pi

Kind of a ritual, first thing for all of my projects is updating the Raspberry Pi, by doing this you ensure

your pi has all the latest updates to the OS you are working with.

To do this we use;

sudo apt-get update
sudo apt-get upgrade

With this done, reboot the pi using;

sudo reboot

Wait for the reboot process and login again

Step 2: Install Print Server Software CUPS

With the update done the next line of action is to install our print server software CUPS.

To do this run;

sudo apt-get install cups

This will take some time but will install CUPS and other dependencies like Samba, perl and several

other software or libraries.

Step 3: Configure CUPS

With Installation done, its time to check out the configuration file of CUPS. Several settings that

generally affect how cups works, like the port on which cups communicate which is by default 631,

port can be changed here.

The config file can be accessed using;

sudo nano /etc/cups/cupsd.conf

Change/add the following lines to the configuration file.

Only listen for connections from the local machine.

#Listen localhost:631

#CHANGED TO LISTEN TO LOCAL LAN

Port 631

Restrict access to the server...
<Location />
 Order allow,deny
 Allow @Local
</Location>

Restrict access to the admin pages...
<Location /admin>
 Order allow,deny
 Allow @Local
</Location>

Restrict access to configuration files...
<Location /admin/conf>
 AuthType Default
 Require user @SYSTEM
 Order allow,deny
 Allow @Local
</Location>

Save the file using ctrl+X followed by y and then enter.

After saving, restart CUPS to effect the changes to the configuration file using;

sudo service cups restart

Step 4: User Access Settings

Next we add the Pi user to the Ipadmin group. This gives the Raspberry Pi the ability to perform

administrative functions of CUPS without necessarily being a super user.

sudo usermod -a -G Ipadmin pi

Step 5: Network Accessibility

Next we need to ensure that CUPS can be connected to on the home network and its also accessible

across the entire network.

To get it to allow all connections on the network, run;

sudo cupsctl –remote-any

After this we then restart cups to effect changes using;

sudo /etc/init.d/cups restart

With this done we can proceed to test if it works effectively by checking out the CUPS homepage.

Open a web browser and type in your Pi’s IP address, indicating the cups port.

e.g 192.168.137.147:631

631 is the cups port.

You should see the cups homepage like the image below.

Please note that your browser may warn you about the security certificate of the website but just click

on ignore and proceed. Is that right?, I know, I had doubts too while trying, but haven’t had any

security breach since then so…

With this done we are ready to move to the next step.

Step 6: Setting Up Samba on Raspberry pi

Samba is an interoperability tool that allows for easy communication between windows and linux or

unix programs and it will be used to allow our windows based system to communicate with CUPS

running on the Raspberry Pi to print.

While cups is being installed, it installs other dependencies like samba, but just in case it wasn’t

installed, you can install it by following the procedure below.

Run:

sudo apt-get install samba

Wait for the installation to run its course then proceed to configure samba.

Step 7: Configure Samba

Configure samba by opening the configuration file using;

sudo nano /etc/samba/samba.conf

In the conf file, scroll to the print section and change the; guest ok = no to guest ok = yes

guest ok = yes

Also under the printer driver section, change the; read only = yes to read only = no

read only = no

With this all done save the file using ctrl+X followed by y and enter.

After saving the file restart samba to effect the changes using;

sudo /etc/init.d/samba restart

With samba installed, our Raspberry Pi is finally ready to be attached to a printer so we take the

final step which is adding a printer to cups.

Adding a Printer to CUPS

Adding a printer to cups is officially one of the easiest thing to do, go to the CUPS homepage once

more by entering your PI’s IP address into a web browser followed by “:631” which is port address on

which CUPS is communicating, your Pi’s IP address can be gotten easily by running the command;

hostname –I

Now on the home page, click on the administration tab.

This will take you to the administration page where you will see add new printer. Follow the prompts,

select your printer server and continue.

On the final stage before clicking on continue, ensure you checked the “share this printer” check box.

With this you are all done, move the printer to the preferred location, fire up your Raspberry Pi and

print away.

Oh before I forget (rushing to get some chicken, it’s Christmas), to add the new created network

printer on your Windows PC, go to devices and printers, select “Add a printer”

Squid Setup

Install Squid:

Enter the following in the shell

sudo apt-get install squid

Configuring Squid:

Backup the original Squid config file:

sudo cp /etc/squid/squid.conf /etc/squid/squidoriginal.conf.bak

Edit the config file:

sudo nano /etc/squid/squid.conf

use Ctrl + W to find each section:

http_access allow localnet = remove the # symbol

Find: acl localnet section

add the following:
acl localnet src YOUR CIDR IP RANGE # Description

ie:

acl localnet src 192.168.5.0/24 # Home Network

Make sure the ip range/cidr matches your networks range

Find: # dns_v4_first off remove the # symbol and change off to on.

Cache_mem 256 MB

Maximum_object_size 4096 MB

Maximum_object_size_in_memory 8192 KB

Cache_dir ufs /var/spool/squid3 = 8192 (1st variable - this is 8192 MB) #my is
pointing to mounted thumb drive.

Ctrl + X and Y to save & exit.

Backup your altered squid config file and restart the Squid service:

sudo cp /etc/squid/squid.conf /etc/squid/mysquid.conf.bak

sudo service squid restart

Make managing Squid easier with Webmin:

First, install webmins prereqs; open a shell and enter:

sudo apt-get -f install

sudo apt-get -y install apache2 apache2-suexec-custom libnet-ssleay-perl libauthen-
pam-perl libio-pty-perl apt-show-versions samba bind9 webalizer locate mysql-server

sudo apt-get install squid-cgi

Enter a secure password for MySQL when prompted.:

From the shell enter these commands in turn:

cd

check your current path should read as /home/pi
pwd

sudo mkdir installed-packages

cd installed-packages

Download the Webmin interface package:
sudo wget http://www.webmin.com/download/deb/webmin-current.deb

Install Webmin:
sudo dpkg -i webmin-current.deb

Once Webmin has been installed; open a browser on your pc https://192.168.5.250:10000

Login using the raspberry pi login (default is pi and raspberry).

In webmin; you’ll be able to adjust Squid settings through webmin. Look under servers; Squid proxy

server.

At this stage, its highly likely your webmin config isn’t configured for Squid Pi (should be fine if your

following this guide on a Linux ‘Intel / AMD’ PC…

You’ll find SQUID hidden under the In-used modules menu.

Click on the edit config button, change squid3 to squid where highlighted.

Hit save, then hit the orange apply config button. After a minute of so, the Squid services will be

restarted and Webmin will work.

If you have an error relating to the cache manager statistic icon, ssh back onto the Pi, use sudo nano to

edit the config file, make the required change and save the file. You may need to reboot the pi.

Configuring the client:

Set browser proxy: Enter the ip address of the Raspberry Pi (192.168.5.250) and port 3128. Restart

browser.

Clear your browser cache and restart the browser. You should now be using the Squid Proxy server on

your Raspberry Pi.

Check the cache log:

To check the squid cache logs, open a new shell window and enter:

sudo tail -f /var/log/squid/access.log

Hits are items being pulled from the Squid Cache rather than the internet.

Summary:

If your unlucky enough to have a slow or laggy internet connection, one possible solution for you is to

build and test a Squid proxy server. However, bear in mind, your mileage may vary as not all objects

are cacheable, and certainly any improvement is less noticiable on fast internet connections such as BT

infinity.

I performed some “not very scientific” tests using OpenOffice.org. I found that the download speed of

the OpenOffice installer on the first try was 3.9mbs, jumping to 7.9Mb/s after caching once, then

maxing out at 9.8Mb/s on the second and subsequent runs (likely a limitation of the Raspberry Pi’s

network card – which is limited to 100mbs – UPDATE: Raspberry Pi3B+ has a much faster NIC card).

If your still running Wheezy, or another Linux distro; this is the equivalent method of

setting up static ip:

sudo nano /etc/network/interfaces

Remove the line that reads: iface eth0 inet dhcp

Add the following:

iface eth0 inet static

address 192.168.5.250

netmask 255.255.255.0

network 192.168.5.0

broadcast 192.168.5.255

gateway 192.168.5.254

Check DNS:

sudo nano /etc/resolv.conf

set to: 208.67.222.222, 208.67.220.220

Reboot the Pi using: sudo reboot

PiVPN
Installation of PiVPN (The software we will be using as our VPN server) is a breeze. You simply have

to run just one command to install PiVPN. I will assume you already have the Raspbian OS up and

running. You only need the lite version if you will be running headless, that’s how I am installing it

since I will have PiVPN running along side PiHole, my network wide ad blocker.

Run the following command in a terminal window or use SSH to install PiVPN:

curl -L https://install.pivpn.io | bash

1 curl -L https://install.pivpn.io | bash

Just a quick side-note, running a command like this is dangerous. Basically what the command being

run is doing is going to http://install.pivpn.io and parsing the data then running it in the command line.

If you run a similar command from an untrusted source you can do some damage and it is very

dangerous to do so. You can type https://install.pivpn.io in your browser to see the exact commands

being run.

After you run the command above you should get the window below after a few minutes, hit enter to

continue:

You will get a windows asking you to select which network interface you would like to use. I use my

Ethernet connection in this example which is labeled eth0. I suggest using an ethernet connection since

it will work a lot faster.

Once you select your network interface it will ask you if you would like to setup the interface to have a

static IP Address. I highly suggest to setup the IP Address to have a static IP Address. This will ensure

that your internal IP Address doesn’t change if you restart your Raspberry

Pi.

The next step will ask you to pick a user that will have the PiVPN configuration settings. If you created

other users you can select them here. The user you pick is not really important. You can see in my

image below I have 2 users. One is the original ‘pi’ user and the other is the ‘pihole’ user from my

adblocker.

The next step is another crucial step. Since we will be opening a port on our router to redirect to our

Raspberry Pi we can be vulnerable to attacks since we are exposing our device to the internet. What

this step will do is enable unattended upgrade of security patches. Basically your Raspberry Pi will

check daily for new security updates and update itself. You should periodically reboot for some updates

to apply. I would also suggest strong passwords on your users.

After you enable security updates you will get the following screen setting up PiVPN.

Simply pick UDP in this screen. There is no need for TCP.

The next step we will pick our port for our VPN connections. The default port is 1194. As you can see I

chose port 11948. You can leave the default VPN port of 1194 or change it to something else. My

suggestion is changing it to enhance security. Changing your port won’t turn your server into Fort Knox

but it will not show up in default port scans of your IP Address assuming the attacker is scanning

default ports only.

The next step is to set the size of your encryption key. I suggest the 2048 bit encryption only because

its secure enough. I wouldn’t suggest dropping to 1024 bit encryption unless you are running a old

Raspberry Pi. Since I am installing this on a Raspberry Pi 3 then 2048 bit encryption will be sufficient

enough and will run with no issues. I have never tried the 4096 bit encryption, the only difference will

be that it will take a longer time to create the encryption key and will be more secure if trying to crack

it.

You will get the following screen when your key is being generated. It will take a few minutes to

generate. It took my Raspberry Pi 3 around 3 minutes to generate a 2048 bit encryption key.

The next step will be to set up your DNS entry. I blanked out my IP Address since I did not want to

expose it. If you have a static IP Address from your internet provider then I would use this IP Address.

If you have an IP Address that changes randomly then you can use the DNS Entry screen. You will

need to sign up for a DNS website like No-IP that will track your IP Address. You will get a name like

xxxx.noip.com which you will put in the DNS Entry screen.

Next, you’ll be asked to select the DNS provider you’d like to use for your VPN. This can be important

if the reason you’re looking to have a VPN is for privacy. The DNS provider converts URL’s into IP

Addresses and lets your computer know where to go on the internet. Many DNS providers log this

information and can build a data-set about you. If you don’t know which DNS provider to choose

simply use Google’s DNS provider.

That’s it! You will get the following screens telling you to run the ‘pivpn add’ command as well as

rebooting to make sure all the configuration files are applied. Go ahead and reboot.

After the reboot go ahead and run the following command to upgrade and install all our packages. After

doing that reboot one more time to make sure everything is applied:

sudo apt-get upgrade

1 sudo apt-get upgrade

Create your OpenVPN Client File

Once you have rebooted your Raspberry Pi again, run the ‘pivpn add’ command to create a .ovpn file

which we will need to transfer to our clients. This file contains a generated key that is used for logging

in to our server. You can use this file for every device or you can generate new .ovpn files with the

‘pivpn add’ command.

pivpn add

1 pivpn add

When creating the .ovpn file, you will be asked for a pass phrase. This pass phrase will need to be

entered each time you use your VPN client to connect to your Raspberry Pi VPN server. I suggest you

use a strong and long pass phrase since the client .ovpn encrpytion file and the pass phrase are your

only weaknesses for someone hacking your Raspberry Pi VPN Server. Keep your

configuration/encryption file safe.

OpenVPN Clients

There are many OpenVPN clients to choose from. I use the official OpenVPN software for my

Windows computer and my Android phone. I don’t own a Mac or an IPhone so I can not recoomend

anything on that end.

The OpenVPN client for Android can be found here. You can download the official client for Windows

from the OpenVPN website here.

Options for Transferring your .OVPN file to your OpenVPN Client

You will need to transfer the .ovpn file your created in the previous step to your client. The client is

device which you will be using to connect to your Raspberry Pi VPN server. Your computer or phone

can both be clients.

If your client will be a PC or Mac computer then the easiest way to transfer your .ovpn file will be over

FTP. You can download a FTP client like FileZilla to connect to your VPN server and transfer the .ovpn

file. Once you transfer it you will need to import this file into your VPN client.

if your client is a phone like and Android or an IPhone you have two options. You can either email

the .ovpn file or you can transfer it using an SD card. If you email the file remember to delete from

your email since you want to keep this file a secret. If this file gets compromised then the only thing

that’s stopping your Raspberry Pi VPN server from getting hacked is your pass phrase, that is why you

need a strong pass phrase as well.

Port Forwarding on your Router

The final step you will want to do is to forward your Raspberry Pi’s VPN port on your router. The

default port you need to forward will be 1194 unless you changed this port in the PiVPN

setup. Google “port forwarding” and your router name to find out how to do this for your own router.

Conclusion

With PiVPN setting up OpenVPN on the Raspberry Pi couldn’t have been easier. Having your own

VPN server on the Raspberry Pi will definitely improve your privacy and online security when you are

away from home. Setting up your own VPN server only takes a few minutes and the step by step guide

created by PiVPN is great.

The one thing I can not stress enough is locking down your Raspberry Pi because you will be exposing

your Pi to the wider internet with the port forwarding. This may increase the attacks to your network

and I recommend reading some basic security steps you can do to improve the security on your

Raspberry Pi and your network.

How to install a web server on the Raspberry Pi
(Apache + PHP + MySQL)

After creating your SD card, and after starting your Raspberry Pi for the first time, there are strong

chances that you want to use as a web server.

Why a Raspberry Pi as a web server ?

But why use a Raspberry as a web server, rather than using services providers specialized in web

hosting?

First, from an economic point of view, you should know that web hosting services are not free and

that you have to pay every month / year. Unlike the Raspberry who just need to a connection.

In addition, by choosing Raspberry, you have the possibility to modify your services like you want

(examples: the size of the disk, the hosting of Database, etc.), which is generally not the case with

specialized hosts , Which often sell shared hosting with low configuration capacity.

However, to support more users, you should use a Raspberry Pi 3 (the Pi 3 can be found here), the

Raspberry Pi with 1 GB of RAM, rather than the Raspberry type B + (512 MB of RAM)

The question that now arises is, how to make a web server on Raspeberry Pi ?Installation du serveur

Apache avec Raspbian

What is Apache ?

First, we will install Apache, which is the web server as such.

When we speak of a web server, we often think about the machine, but this term also refers to the

software that allows the machine to analyze user requests (in http form), and to return the file

corresponding to the request (Or an error if the file isn’t found, or the query incorrectly formulated).

As part of Apache, it’s software that we talk about.

At the moment, Apache is the most used web server, with about 60% market share. Apache has its

own license, used by many other projects. In addition, the massive use of Apache (which has become

the standard for web servers), coupled with its high popularity, has led to a tremendous abundance of

documentation, courses, and other books dealing with its use, and his security, like this book.

Whether it is for the Raspberry Pi and Raspbian, or for a more general-purpose machine, Apache is

therefore a safe choice, and the skills you will be able to acquire on the subject will always be useful.

Apache installation

Before installing the server, make sure we have an up-to-date machine. To do this we must have

administrator rights, either because of the sudo command.

sudo apt update

sudo apt upgrade
sudo apt update

Once the Raspberry Pi is up to date, we will install the Apache server.

sudo apt install apache2

By the way, we’ll take advantage of it to give rights to the apache file that you can easily manage your

sites. To do this, run the following commands:

sudo chown -R pi:www-data /var/www/html/
sudo chmod -R 770 /var/www/html/

Check if Apache is working

Once the installation completed, we can test that Apache is working properly by going to the

Raspberry address.

To do this, it’s necessary to try to access to the Raspberry from port 80 (this port not being opened from

the outside, it will have to do since the Raspberry itself). Do not worry, it’s very easy. Simply open the

Raspberry web browser, and go to “http://127.0.0.1”. You should then get a page with a message like

“It works! “And plenty of other text.

If you do not already have a GUI on your Raspbian, or you use SSH to connect to your Raspberry, you

can use the following command:

wget -O check_apache.html http://127.0.0.1

This command will save the HTML code of the page in the file “check_apache.html” in the current

directory.

So you only have to read the file with the command

cat ./check_apache.html

If you see marked at a location in the code “It works! ” is that Apache is working.

Apache uses the directory “/var/www/html” as the root for your site. This means that when you call

your Raspberry on port 80 (http), Apache looks for the file in “/var/www/html”.

For example, if you call the address “http://127.0.0.1/example”, Apache will look for the “example”

file in the “/var/www/html” directory.

To add new files, sites, etc., you will need to add them to this directory.

You can now use your Raspberry to make a site in HTML, CSS and JavaScript, internally.

However, you may want to quickly allow interactions between the site and the user. For example, to

allow the user to register, etc. For this, you are going to need PHP.

PHP installation on your Raspberry Pi

What is PHP ?

First of all, you should know that PHP is an interpreted language. And as in the case of servers, the

acronym PHP can have several meanings. In fact, when we talk about PHP, we can talk about either

the language or the interpreter.

Here, when we talk about installing PHP, it means that we will install the interpreter, in order to use

the language.

PHP (the language this time) is mainly used to make a site dynamic, that is to say that the user sends

information to the server which returns the modified results according to this information.

Conversely, a static site doesn’t adapt to information provided by a user. It’s saved as a file once for

all, and will always deliver the same content.

PHP is free, and maintained by the PHP Foundation, as well as Zend Enterprise, and various other

companies (it should be noted that Zend is also the author of the famous Zend PHP framework, widely

used and recognized in the world of ” business).

It’s one of the most widely used programming languages, and it is even the most used for web

programming, with about 79% market share.

Again, all the skills you can acquire, on the language, or on the installation and configuration of the

interpreter, will always be useful. So we can only advise you to learn the PHP, which is really a

wonderful language and too often underestimated.

How to install PHP

We will again use the administrator to install PHP with the command line.

sudo apt install php php-mbstring

Control if PHP is working

To know if PHP is working properly, it’s not very complicated, and the method is quite similar to the

one used for Apache.

You will first delete the file “index.html” in the directory “/var/www/html”.

sudo rm /var/www/html/index.html

Then create an “index.php” file in this directory, with this command line

echo "<?php phpinfo ();?>" > /var/www/html/index.php

From there, the operation is the same as for the Apache check. You try to access your page, and you

should have a result close to this image (if you do not have an interface, use the same method as before,

and look for the words “PHP Version”).

Table generated by the phpinfo command on a raspberry.

A MySQL database for your server

A DBMS what’s it ? Why MySQL ?

Now that we have set up PHP, you will probably want to store information for use in your sites. For

this purpose, databases are most often used.

We will therefore set up a DBMS (Database Management System), namely MySQL.

MySQL is a free, powerful, massively used DBMS (about 56% market share of free DBMS). Here

again, MySQL is so essential to development, whatever the language, that you must absolutely learn

and master it, with this book for example.

How to install MySQL

To do this, we will install mysql-server and php-mysql (which will serve as a link between php and

mysql)

sudo apt install mysql-server php-mysql

Verify that MySQL is working correctly

To check the operation of MySQL, this time we will only use the command line. To do this, we will

simply connect via the command:

sudo mysql --user=root

We will no delete the default mysql root user and create a new mysql root user, because the default one

can only be used with Linux root account, and so not available for the webserver and php scripts.

To do so, once your connect to MySQL, simply run thoses commands (replace password with the

password you want) :

DROP USER 'root'@'localhost';
CREATE USER 'root'@'localhost' IDENTIFIED BY 'password';
GRANT ALL PRIVILEGES ON *.* TO 'root'@'localhost'

So you now have a web server, connected to PHP and MySQL. That’s all it takes.

(On your nexts connections, you will be able to connect to mysql without using sudo, with the

command mysql --user=root --password=yourmysqlpassword).

Add PHPMyAdmin

The installation of PHPMyAdmin is absolutly not necessary. In this installation, we will not take

care about any special security settings !

The PHPMyAdmin installation is pretty quick and easy, we simply have to use the packet manager

with this command :

sudo apt install phpmyadmin

PHPMyAdmin installation program will ask you few question. About the dbconfig-common part,

choose to not use it (as we have already configure our database). About the server to configure

PHPMyAdmin for, choose Apache. And the root password is the one you set for MySQL.

Check that PHPMyAdmin is working properly

To check that PHPMyAdmin works, you will simply try to access it, using the address of your

Raspberry followed by /phpmyadmin. For example, locally it will be

http://127.0.0.1/phpmyadmin

If you still get an error, it could be because PHPMyAdmin has moved to another directory. In this case,

try the command

sudo ln -s /usr/share/phpmyadmin /var/www/html/phpmyadmin

Now, we can access to PHPMyAdmin from Raspberry Pi’s browser, with the url :

http://127.0.0.1/phpmyadmin

Making a server accessible from the web

Your web server is ready. However, you probably can not access it from the internet. Indeed, it

would be necessary for that your modem to redirects the requests to your Raspberry, the good ports.

To put these redirections in place, and even get a URL, you should look to DynDNS and port

forwarding !

How to Install a LAMP Server on Debian 9
Stretch Linux

Introduction

The LAMP server is the cornerstone of Linux web hosting. In the early days of dynamic web content

LAMP was what won Linux the crown in the web space, and it still is responsible for powering a very

large portion of the Internet's sites.

If you're looking to set up a LAMP stack to host your website, it'd be hard to find a better option to

build it on than Debian Stretch. Debian is, after all, well known for its stability, security, and massive

package repositories, and Stretch is certainly no exception.

MariaDB(MySQL)

To get started, install and setup the database portion of the stack, MariaDB. Traditionally, the "M" in

LAMP stands for MySQL. However, MariaDB is a drop-in replacement that isn't controlled by Oracle,

so it tends to be a better option.

To install MaridaDB on Stretch, just use apt to install the packages.

apt install mariadb-client mariadb-server

During the install process, you will be prompted to create a root password for MariaDB. Make sure to

choose something as secure as possible, since it will determine, in part, the security of your databases.

Now that the MariaDB server is installed, you can log in as your root user and set up a regular user and

a database.

mysql -u root -p

MariaDB will then prompt you for the root password that you just set up.

Creating a database is fairly simple. Just run the following.

CREATE DATABASE newdb;

You need to create a regular user now to use the database. It is an absolutely terrible idea to use the root

user for anything other than managing MariaDB as a whole.

CREATE USER 'username'@'localhost' IDENTIFIED BY 'userpassword';

That command creates a regular user that can sign in locally and set that user's password.

In order for that user to be able to use the database that you just created, you need to grant them

privileges on it. Since this is a general purpose user for managing everything on this database, it will be

given all privileges.

GRANT ALL PRIVILEGES ON newdb.* to 'username'@'localhost';

Once that's done, flush all privileges from the console and exit.

FLUSH PRIVILEGES;
quit

That's all for the database. Certainly, you can customize any portion of this as you need.

PHP

The next step in getting the LAMP server set up is installing PHP. In the LAMP stack, PHP powers the

web content and interacts with the database. To install PHP on Debian Stretch, run the following line.

apt install php7.0 php7.0-mysql

That's really all that you need. PHP is now ready to use.

Apache

The Apache web server is extremely powerful and can be extremely easy to set up or ridiculously

difficult, depending how in-depth you wan to go. Because this is just a simple guide, it's going to

follow the quickest path for getting a basic server set up.

So, install both the Apache server and the module for PHP support.

apt install apache2 libapache2-mod-php7.0

Testing Your Server

By default, Apache will server the contents of /var/www/html and will look first for a file called

index.php or index.html. Create that file, and place the following line of code in it.

<?php phpinfo(); ?>

Open up your browser and type in localhost in your address bar. If you aren't doing this locally,

type your domain name or IP. You should see a long table containing information about your PHP

install. At this point, your sever is officially working.

If you want an easy way to manage your database through a graphical web interface, you can install an

application called, phpmyadmin. It allows you to manage your database using PHP through your

LAMP server. To install it on Stretch, just pull it with apt.

apt install phpmyadmin

Once the package installs, you can navigate in your browser to localhost/phpmyadmin You will

be greeted with a login screen that will accept your database credentials and finally, an interface to

work with your database.

Closing Thoughts

Your LAMP server is now ready to go. Of course, there are tons of other options, and if you plan to use

this as a public facing server, you may want to look into more security options for Apache. That said,

this LAMP server can run everything from your custom PHP application to popular solutions like

WordPress and even development frameworks like Laravel.

MotionEye

Installation
Calin Crisan edited this page · 17 revisions

Requirements

• a machine running a recent Linux distro

• python 2.7

• tornado 3.1+

• jinja2

• PIL or pillow

• curl, libcurl & pycurl

• motion (optional)

• ffmpeg (optional)

• v4l-utils (optional)

The Motion Daemon

The motion daemon itself is optional, but needed in most cases. Install it (along with ffmpeg and

v4l-utils) unless you configure a machine that will only act as a hub for other motionEye-based

cameras.

Install Instructions

motionEye releases are uploaded to PyPI, so you can use the pip (or pip2) command to install it as

well as (some of) its dependencies. Following are detailed instructions for some common distributions.

note 1: The given commands normally need to be run as root; type them in a root shell or use sudo

before each command.

note 2: On systems where Python3 is the default Python interpreter, you should use the pip2

command instead of pip.

note 3: If you are configuring a motionEye system that will only act as a hub for other motionEye-

based cameras (i.e. no locally connected cameras and no IP cameras), you can skip installing motion,

ffmpeg and v4l-utils.

Choose one of the following specific install instructions. When you're done, you may want to come

back here and read on to find out how to access the frontend or how to update your motionEye.

• Install On Debian

• Install On Ubuntu

• Install On Raspbian

• Install On Fedora

• Install On Arch

• Install On Other Distributions

• Manual Download And Installation

Accessing The Frontend

After having successfully followed the installation instructions, the motionEye server should be

running on your system and listening on port 8765. Fire up your favorite web browser and visit the

following URL (replacing [your_ip] with... well, your system's IP address):

http://[your_ip]:8765/

Use admin with empty password when prompted for credentials. For further details on how to

configure motionEye, see Configuration.

Upgrading

Upgrading should be as easy as running the following command (as root):

pip install --upgrade motioneye

To upgrade to a specific version (say 0.27.1), use:

pip install --upgrade motioneye==0.27.1

If you have manually downloaded and installed motionEye, the pip command above won't work and

you'll need to repeat the manual installation procedure, preserving the configuration directory.

Install On Raspbian
Calin Crisan edited this page · 29 revisions

Before Proceeding

• Read the general Installation page first.

• These instructions apply only to an up-to-date Raspbian Stretch.

• All commands require root; use sudo before each command or become root using sudo -i.

• If you want to use the CSI camera module for the Raspberry PI, make sure you have enabled it

in raspi-config.

Instructions

1. Install ffmpeg and v4l-utils:

 apt-get install ffmpeg v4l-utils

note: v4l-utils appears to be preinstalled on Raspbian systems

2. Install libmariadbclient18 and libpq5 required by motion:

 apt-get install libmariadbclient18 libpq5

3. Install motion:

 wget https://github.com/Motion-Project/motion/releases/download/release-
4.1.1/pi_stretch_motion_4.1.1-1_armhf.deb
 dpkg -i pi_stretch_motion_4.1.1-1_armhf.deb

note: Raspbian Stretch comes with motion version 4.0; it is however recommended that you

install version 4.1

4. Install the dependencies from the repositories:

 apt-get install python-pip python-dev libssl-dev libcurl4-openssl-dev
libjpeg-dev libz-dev

5. Install motioneye, which will automatically pull Python dependencies (tornado, jinja2,

pillow and pycurl):

 pip install motioneye

6. Prepare the configuration directory:

 mkdir -p /etc/motioneye
 cp /usr/local/share/motioneye/extra/motioneye.conf.sample
/etc/motioneye/motioneye.conf

7. Prepare the media directory:

 mkdir -p /var/lib/motioneye

8. Add an init script, configure it to run at startup and start the motionEye server:

 cp /usr/local/share/motioneye/extra/motioneye.systemd-unit-local
/etc/systemd/system/motioneye.service
 systemctl daemon-reload
 systemctl enable motioneye
 systemctl start motioneye

9. To upgrade to the newest version of motionEye, just issue:

 pip install motioneye --upgrade
 systemctl restart motioneye

